Teaching Research and Analysis for Public Policy and Management: What Big Data Does and Does Not Change

Dahlia Remler

School of Public Affairs
Baruch College, City University of New York

April 12, 2014
APPAM Spring 2014 Conference
Plan of Talk

• Research & Analysis for MPA/MPP
 – Courses, students/challenges, learning goals
 • Main focus on required R&A courses

• Changes in *what* we teach from Big Data?
 – New Stuff
 – Old Stuff Now More Important
 – Old Stuff Now Less Important

• Raising questions more than answering them (often)
Research & Analysis for MPA/MPP

• All require some form of R&A:
 – Statistics, research methods for PA, quantitative methods, data analysis...
 – Variation in content, emphasis
 • Sometimes: just statistics, much or little qualitative, other quant methods besides stats, data collection
 • More variation than optimal?
 – How many courses?
 • Always 1, Usually 2, Rarely 3
 • Right amount?

• Capstone, More advanced R&A
MPA Student Challenges

• In considering required content:
 – *Very* diverse quantitative backgrounds!
 • Exacerbated by sequential nature of much R&A content
 – Very diverse IT backgrounds?
 – Diverse motivations (or lack) for R&A
 – Career stage variation
 – Limited time
 – Most MPAs do not become researchers or analysts!
 • Will almost everyone be analyst?
MPA/MPP Learning Goals

• Critically consume research & analysis
 – Spot weak or invalid conclusions
 – Extract & apply relevant, valid conclusions
 – Quantitative literacy

• Commission research
 – Pose question/purpose effectively, realistically

• Perform R&A in policy/practice capacities
 – Quick, on the fly, analysis
 – Formal, traditional research

• Does Big Data change the mix?
Priorities!

- Time constraints, Student learning realities ➔ Can’t teach everything, particularly not effectively
- Can’t only suggesting *adding*
- What do we prioritize?
New Stuff from “Big Data”

• Qualitative data (existing)
 – Text...audio, video, images
 – Coding (convert to categorical or other quant data)
 – Analyzing
 • Not traditional qualitative data analysis

• Caution about “Inference” for census (not sample) data

• Data Visualization
 – Faculty need to catch up
Image of Insurance Changes (John Graves)

Uninsured in 2013
40.7 million (100%)

ESI: 7.2 million (17.7%)
Medicaid: 3.6 million (8.8%)
Other: 1.8 million (4.4%)
Marketplace: 1.4 million (3.4%)
Non-Group: 0.5 million (1.2%)
New Stuff from “Big Data”

• Knowledge about new forms of data
 – “Raw” forms (what we leave on Internet)
 – How extracted
 • Ex: Scraping data off websites, pinging
 – How cleaned, merged...
 – An updated version of old message to know everything about your data
 • But much harder, more technical now

• New forms of analysis???
 – Machine learning, CS algorithms
 – Everyone will be consuming new analysis
Old Stuff Now Even More Important

- Correlation vs. causation
 - Distinguish: Description, prediction, causal effects, explanation
 - Time trend correlation problem!
- Theory, mechanisms
- Measurement
 - What do you want to measure? Purpose?
 - Validity (concept vs. actual measure)
 - Google flu trends
 - Desired population vs. “sample”
Correlations of time trends
Old Stuff Now Even More Important

- Data management
 - Data structures
- Data analysis
 - Vs. inference
 - Practice with actual data
- Intuition on
 - Over-fitting, Statistical significance, Multiple comparison problem
- "Everyday" analysis
 - Constantly monitoring data patterns
Old Stuff Now Less Important

- Inferential statistics
 - But not basic intuition
 - Technical aspects, specific tests
 - Not a long list, but a lot of time and effort

- What else?
 - Either find stuff to cut or shorten... or add more courses?
 - What belongs in required courses? What in more advanced electives?
Conclusions

• More data analysis, less inferential statistics
 – Data visualization
• Old skill “knowing your data” got a lot harder
 – Same measurement stuff in principle, a lot more IT knowledge in practice
• Correlation vs. causation, theory still very important, despite hype
• Faculty will need to learn!
• Hype may have been over-done and wrong in detail but Big Data is a big deal
• Many questions remain:
 – What to cut from required R&A? Or do we add courses?